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SOME EFFECTS OF COINIPRESSIBILITY ON THE FLOW THROUGH FANS AND TURBINES
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SUMMARY

Zie laws of con8eroatwn of ma3i3, momentum, and ener~ are
applied to the convpreseibk jlow through a twodimen8bnu.?

cascade of airfoiik A fundamental reld”on between the uki-
mate upstream and downstream jlow angle8, the inlet Mach
number, and the pre8&ure ratio acro88 the ca8cad6 ~ deriwd.
Comparison with the oorrespcmding relatiim for &mompre8tibk?
jlow .shaws large di~wtmces.

Thfundamental relidion receak two ranges ofjlow angles and
inlet Mach number8, for which no ideal pressure mi%o exist8.
One of these nonideal opsrating range8 is analogous to a timilar
type in incompressible $ow. The other I%characteristic only of
compressible @w.

The effect of rariabb w-al-jaw area ia treated. Some impl+
caitins of the basic con8eroation laws i-n the cwe of nmideal
jlow throwgh cascades are die.mumed.

INTRODUCTION

In the endeavor to obtain high pressure rise horn axial-
flow compressor, the operating speeds have been increased
in recent years ta compressibility speeds. The precise extent
of validity at these speeds of the incompressible-flow methods
of design of axial-flow comprewor blading appears not to
have been considered heretofore.

In this pRper, which describ~ results of a theoretical
investigation made at the NACA Clevekmd laboratory during
1944 and 1945, the extent of validity is determined in the
isentropic case by applying the compressible-flow laws to the
ultimate upstream and downstream flow conditions in a
two-dimensional cascade of airfoils. The resulting equations
relating the pressure ratio m.ro= the cascade, the flow angles,
and the inlet Mach number are compared with the corres-
ponding incompressibl#low reIations.

The results apply to both fan-type and turbine-type cas-
cades. Although comprwsible-flow relations are generally
used in the design of turbine cascades and, less generaIly,
in the design of fan cascades, it is thought that the compact
form of the results presented herein will render them more
easily applicable than the other methods now in use.

SYMBOLS

The following symbols are used in thii report:

A. flow area perpendicular to axial direction
Cp specific heat at constant pressure
3f Mach number of flow

842951-50-10

P static pressure
R gas constant
S’ entropy
8 cascade spacing
t temperature
u velocity in x-direction
v velocity in y-direction
10 remdtant velocity; also mean vehcity
x z-direction (tmgential) force per blade per unit span
Y @irection (normal) force per blade per unit span
7 ratio of speciik heats
h angle of flow measured from a.tial direction

P density

Subeoripta:

1 upstream of cascade
2 downstream of cascade
8 stagnation

VELOCITY-DIAGRAM RELATIONS FOR COMPRESSIBLE
CASCADE FLOW

GOVERNINGEQUATIONS

Consider the ultimate upstream and downstream compress-
ible-flow conditions, or the velocity diagram, for the cascade
of airfoik representing a fan or a turbine-blade arrangement
(fig. 1). The conservation laws applied between the up-
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stream section and the downstream section where the flow
is assumed to be uniform and to pass through equal areas are:

Continuity

plvl=p~v2 (1)
Energy

Cptl++ w?= Cptj+$ W22 (2)
.

Momentum

Normal, y-direction:
Y
; =Pl –P2’+Plv12-P2& (3)

Tangential, zdirection: := P1O1(M—uJ (4)

In addition, there is the gas law

p =pRt (5)

and the isentropic relation

()
@=&’
l-h PI

(6)
.

(The assumption of the isentropic exponent 7 prevents the
direct application of the results to fan or turbine blading. It
appears, however, that use of a suitabIe polytropic exponent
n #Y allows direct application in many cases.)

Substitution of equations (l), (5), and (6) in equation (2)
yields the fundamental reIation between the flow angIes Aland
A2,the pressure ratio p.g/pI, and the inlet Mach number M:

For the case of incompressible flow, the expression cor-
responding to equation (7) maybe derived from the equations
corresponding to (1) and (2); namely

Continuity (incompressible): v,=% (8)

BernouIIi (incompressible): PI +; mwlz=pi +; Piu%2 (9)

The result is

Gx=d’-&e-’)
Cos h]

(lo)

in which the substitution

(11)

has been made for comparison with the comprawiblc-flow
relation (equation (7) ). Equation (1O) may also be derived
as the limiting form of equation (7) when tho speciEc-lumt
ratio 7 approaches inEnity. (The incompressible fluid may
be regarded as the Iimiting form of a compressi~le perfect.— —

4fluid in which the veIocity of sound Y: approaches infinity.

Inasmuch asp and p remain finite, Y must become infinite,)

GRAPHICALREPRESENTATIONOFEQUATIONS

For a ~ivcn inlet Mach number Ml and pressure ratio
p2ipb equation (7) shows that the flow angles Al and X2am
not specified but only their cosine ratio. A plot of the cosine
ratio cos ?v/cos h against the flow deflection Al—h, with
h or 1* as a parameter (fig. 2), illustrates the possible indiv-
idual flow angles and deflections for a given cosine ratio.
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The flow angles Al and ~ maybe visualized m the stagger
angles of the tangents to the camber line of the cascade
blading at the leading edge and the trailing edge, respectively.
For low-speed flow, at least, and for shock-free entry, this
correspondence is approximately valid for cascade solidifies
of the order of unity (soklity=blade chord/blade spacing)
and increases in validlty with the solidity.

The contours representing equation (7) are shown in figures
3 and 4. Several of the contours of figures 3 and 4 are com-
pared with the corresponding contours in the incompressible
case (equation (10)) in figures 4 and 5.

COMPARISONOF COMPRESSIBLE AND INCOMPRESSIBLE EQUATIONS

The comparison between the comprwsible and incompress-
ible equations (figs. 4 and 5) reveals considerable differences
except in the pressure-rise range (pJyJ >1 at low inlet Mach
number (.M1<O .4). @tside this range consider, for exsm-
ple, the determination of the blade camber of a high-solidity
pressure-rise cascade designed to operate at an inlet-flow
angle of 45°, an inlet Mach number of 0.80, and a pressure
ratio of 1.2. (Camber is defined as the diEferwtce in angle
between leading-edge and trailing-edge camber-lina tangents.
Ckmber therefore approximates A,–h for high-solidity
cascades.) By the incompressible contom MI=O.8 in figure
5 and by use of figure 2, the camber should be 26.9°. Accord-
ing to the compressible curve, on the other hand, the camber
should be 9.4°, or 65 percent smaller. If the Met Mach
number is increased to unity, the results arw
hmompressible camber, de~e=---------------------------- IL 8
Compressible camber, de------------------------------- L 5

As an example of the dMerences between compressible and

incompressible flow in the case of a pressure drop through the
cascade, assume kl=OO, M,= O.80, and pJpl=0.7. Then
from figures 2 and 5
Incompressible-flowdeflection, d------------------------ W 3
Compr~sible-flow deflection, de~w ----------------------- 13.1

Thus, the effect of compressibility in the normal operating
range of moderate pressure ratios is to 10WW substantially
the required flow deflection for a given pressure ratio.

On the other hand, for given flow angles, that is, given
cos k/cos b, figure 4 shows that for normal compressor
operation, (COShJcos b)< 1 and @~/pJ >1, the compressible
pressure ratio increases -with the irdet Mach number Ml
at a greater rate than the incompressible pressure ratio.
For example, if cos A1/cos XZ=O.8 in normal compressor
operation and M= 0.8, the incompressible pressure ratio is
1.16 and the compressible pressure ratio is 1.27.

~tIETHERDISCUSSION OF THE COMPRESSIBLE CASE

The surface representing the fu.nckmentaI equation (7) is
the 10CUS of all possible isentropic (loss-free) operating
conditions of the cascade and no others. The contourprojec-
tions of this surface show that certain ranges of opemt in~
conditions are unattainable in isentropic flow; thus, in figure
5, there is no irdet Mach number M to correspond to cosine
ratios cos AJCOS& and pressure ratios p~pl in the plane
regions AOB and COD.

The reason for such nonideal regions can be seen by analogy
with the incompressible case. The incompressible Ml con-
tours entirely exclude the &at and the third quadrants,
relative to point O as origin. consider the case. ___
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(coskJcos AJ>l. Inaamuchas the exitangle & is greater than
the ent.ranee angle 11, the exit tangential-velocity component
is greater than the entrance tangential-velocity component.
Because the axial velocity ia constant, a pressure drop
(.p~/pJ< 1 is required in accordance with Bernoulli’s
theorem, and the operation point for (COShJcos AJ>l cannot
lie in the first quadrant but must lie in the second quadrant.
Similarly, operating points for (COSX,/cos AJ>l must lie
in the fourth quadrant. The partial overlapping of the
compressible-flow curves into the first and third quadrants
is due to the influence of compressibility on the a.xitd com-
ponent of velocity.

Another type of nonideal region is shown in figure 4. For
fixed (COSx,/cos &)>l, an isentropically impossible range
of idet Mach numbers exists, which increases with cos A1/cosx2.
At COS h~/COS &=l.1, for mample, the excluded
Ml range is 0.695 <M*<1 .37. This type of nouideal range
is not present in the incompreasible case shown as tie
dashed curves of figure 4. The lower biting inlet Mach
numbers of this range correspond ta maximum flow through
the cascade, for, because cm XJCOSh is constant along each
curve in figure 4, the maxima of Ml also correspond to the
maxima of Ml (COSXJCOS k). For a given high-solidity
cascade, X2 varies only alightiy as the inlet conditions are
varied; therefore, Ml cos All which ia proportional to the
flow through the cascade, is likewise a mu~immn at these
points. This particular limiting Mach number is indepen-
dent of the blade-shape details and, hence, of the ratio of
minimum flow area to inlet area.

If a cascade ia designed to operate in an isentropically
impossible region, presumably much greater losses, caused
by flow separation and shock waves, will occur than would
be encountered at an ideally permkible operating point.
Such nonideal designs appear to be not at Fillunusual on the
basis of incomprwsible-flow theory.

Of considerable interest is the fact that, at the maxima
and the minima of dl cos xJcos ~ contours, the exit Mach
number M is unity, which may be showu as follows: The
maxima and the minima of the cos hl/cos AZcontours in figure
4 correspond to the maxima of the M contours in figure 3.
The loci of these maxima are indicated in both figures. The
condition for maximum cos AJcos h along m Ml contour is
obtained by dtierentiation of equation (7) as

(P)
‘+1

M
Cos Al pa F— .—

L 1 Cos & 1
(12)

The downstream Mach number M

M,=%
#2 (13)

P2

can now be written, with the aid of equations (1), (2), (5),
and (6), as

Cos ?qM, —
cm Ag1742=

()*‘Q+
PI

(14)

Substitution of equation (12) in equation (14) yields the
desired result, namely, M= 1. In the limiting case M,=O,
equations (12) and (7) show that

&)ML-o=(-+J*=o.528 (,=1.4)

This limiting pressure ratio is the same as the critical
pressure ratio for local Mach number of unity in one-
dimensional compressible flow.

Points to the right of the matium on an Ml coniour
(fig. 3) correspond to subsonic exit conditions M*<1;
whereas points to the left of the ma..kinmm correspond to
supersonic exit conditions Mz> 1. In figure 4 the subsonic
etit region is to the right of the locus of matia and minima
and the supersonic exit region to the left. The proof is as
follows: From general principles, the ideal continuous flow
through a cascade is reversible; that is, equation (7) remains
valid if the subscripts 1 rind 2 are interchanged. This
validity may also be shown directly by substitution of
equation (14) in equation (7) to eliminate Ml. Consequently,
the exit -Mach number M can be determined from the
curves that represent equation (7); thus, in figure 3, the cd
Mach number M for the operating conditions M, pJpl, and
cos A1/cosXiis obtained by interpdat.ion from the M contours
at the point for which the coordinates are the reciprocal
quantities pJpz and cos &/cos k This reciprocal relation,
applied to the loci of the ma.-ximum points on the MI contours
(fig. 3), yields the M,=l contour (where now M,=M,), by
the proof pretiously given; therefore, the reciprocal relation
applied to a point to the right of a maximum yields a point
in the subsonic region relative ta the Ml= 1 contour and
vice versa.

VARIABLE AXIAL-FLOW AREA

In many multistage compressors and turbines, the axial-
flow area is continuously vmied in order to maintain the
axial-flow velocity constant. The effect of a change in
axial-flow area tlmough a cascade can be very simply taken
into account in the preceding analysis. The equation of
continuity (equation (1)] is now

plv1A1=pzv2As (15)

or

p1qa=p202 (16)

where Al and ~z me the ~~ial-flow areas upstream and down-
stream, respectively, of the cascade, and

(17)

The only change required in the fundamentxd equation (7)
is that the flow-angle parameter cos AJ cos X2be replaced by
a (COSh~cos kJ.
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ENERGY RELATIONS FOR CASCADES

If the ie.entropic relation (equation (6)) is dropped, equa-
tions (1) to (5) relate ultimate conditions on each side of a
cascade within which losses may occur. The equations may
also be regarded as relating conditions across two sides of a
line of discontinuity separating two regions of uniform flow,
with the force densities X/s, 1’/s acting on the fluid along the
discontinuity. The oblique shock wave in supersonic flow
repre9ente the speciaI case in which X/s= Y/~=0,

Without the isentropic relation there is, of course, no longer
a unique dependence of the flow-angle ratio cos kJcos i%
OD the pressure ratio p3/pI and the inlet Mach number Ml.
(See equation (7).) Equations (1) to (5), however, yield
information concerning the relation between the pressure
rat ios that might actually occur, the forces on the blacle,
and the 10SSCSin the cascade. ~ Suppose, for example, that
a high-solidity compressor cascade were designed for a certain
ideal operating point, ‘ The iderd forces on the blades could
be calculated from equations (3) and (4). In the actual
flow the pressure ratio would be less than the ideal vahm.
The flow angles, however, bicausc of the high solidity, could
be expected to remain nearly unaltered. On the assumption
of an ideal flow-anglo ratio and a smaller than ideal pressure
ratio, the actual blade forces could be computed by equa-
tions (3) and (4). The vector difference between the actual
resultant force and the ideaI resultant force is a clifference
force caused by friction and shock-wave losses. The corre-
sponding stagnation-pressure 10SS or, equivalently, the
entropy increase acrow the cascade, can also be calculated.

An example of the type of computation just outlined fol-
lows: hong other things, it will be shown that the Merence
force is neither at right angles to the ideal resultant force nor
in the direction of the mean relative flow. Although, as
will be shown, the incompeseible equations predict that the
cMYerenceforce is ahvays in the axial direction, the compressi-
ble equations show that this is far from being the case.

The losses in cascade flow between an ultimate upstream
and an ultimate downstream uniform-flow condition may be
expressed in terms of the actual static-pressure ratio p~pl

and the density ratio pJpl as follows: In the=downstrcam
condition, the ratio of stagnation pressure T,,Z to static pres-
sure p2 is isentropically related to the corresponding tempera-
ture ratio as

()P~2 %J,,2 _
P2 —z

Simihwly, in the upstream condition,

If the preceding two equations are~dividcd, rcmcmlming
that ts,l=ta,zbecause no energy is supplied from the outside,
ancl if preesue and density are substituted for t.cmpmoturo
by the gas law, there results

oB*
P+_ PI_—

P*,1

6)

(18)
g#i
‘1

In isentropic flow, equation (18) reduces, of course, to
Pt,a=pa,l. In an actual flow p,$ is less tlmn, ‘~,,1 corros-
ponding_Jo an entropy increase &-Sl, given ;by the wcll-
known formula

(19)

Substituting the uormal velocity ratio P,)o, into equation (18)
yields, by the continuity equation (l),

,. p&2=

““1 (3;(:P “ ’20)

The normal velocity ratio v2/ol can bo expressed in tmms of
the static-pressure ratio pg/pl, tb inlet Mmh number Ail,
and the cosine ratio cm xJcos AZby equations (l), (2), and
(5). The result is

also

(22)

The expressions (3) and (4) for the blade forces may be
writ ten in nonclhensional form a9

(23) I

(21)

(24)

& examples of the use of the preceding equations, losses
and blade forces for a pressure-rise and a pressure-drop cns-
cade have been computed and the results me listed in table 1.
For both cases an idet Mach number of unity was as.sumcd
with inflow and outflow angles of 55° and 45°, rcspcctivcly.
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These flow angles, though possible for pressure rise, are im-
possible for pressure drop by incompressible-flow theory
(under the condition of constant axial-flow area assumed
here). The ideal quantities were fit calculated and then
for the loss case, new pressure ratios were assumed, -which
yielded the stagnation-pressure losses shown. It will be
noted that the static-pressure ratio of 0.5, -which yields a
stlaamation -pressure ratio of 0,942 in the pressurdrop case,
is greater than the ideal static-pressure ratio. In incom-
prwsible flow it would have to be lower.

(a) PreSmrerfre.
(b) Prmwre drop.

Prawm 6.—TYPIo3Icawadefores and wloeftk%

The cascade-flow angles and forces are illustrated in iigure
6. The remdtant force 1, the difference forced, and the mean
velocity w bear no simple directional relation to each other.
Because, in incompressible flow (under the conditions of

constant asial-ffow area assumed here), oJu= 1 and, in high-
sdidity cascades, uJul remains unchanged from the ideal case
by equation (22), it is evident from equations (3) and (4)
that only the static pressure can change in going from the
ideal to the loss case. The incompressible difference force
must therefore be in the axial direction. This conclusion
for the incompressible case was reached in reference 1 by
another method. The losses in high-speed cascade flow must
evidently be considerably influenced by compressibility
effects.

CONCLUSIONS

1. For inlet Mach numbers less than 0.4 in the normaI
operating range of an axial-flow pressure-rise stage, the
relations for compressible and incompressible flow yield
very nearIy the same results. For larger inlet Ma&numbers
the discrepancies become considerable.

2. The compressible equations show the existence of
nonideal operating ranges, which are not indicated by the
incompremible equations. ~onveraely, certain operating
ranges, -which are excluded by the incompressible equations,
are possible according to the compressible equations.

3. In certain ranges of the flow angl~, two possible pres-
sure ratios are predicted for given inlet Mach numbers and
flow angles.

&acRAzr ENGINE RESEARCH LABOIUTORY,

NTATIONAL ADVISORY COWIIIYEE FOR AERONAUTICS,
CLEVELAND, OHIO, .4ugust 1, 1946.
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TABLE I-LOSSES AND BLADE FORCES FOR CASCADES IN
COMPRESSIBLE FLOW

~,=55°; 1,=45°; M,=I]

l-iPressure rke Pree5uredrop

Ideal &# =

Preswrerfdio,tipi. .. . . . . . . . . . . . . . . . . . y
Stfxwtim yrtiti, kdP4-----

~1.4 am ~as
0.WI

TemgenMal ore XkPI.- . . . . . . . . . . . . .
Nornr81fme, Yam . . . . . . . . . . . . . . . . . 4::

0.290 -k 14s -88:
-a S37 a m

EatIo of rarltant force to dftterence
form.. . . . . ..-. -.-. . . . . . . . . . . . . . . . . . . . - s. 17 - i’.eu

s Assumedwdnes.


